ohinav Modi

➡ abhinav.modi888@gmail.com | 🖬 abhinavmodi16 | 🔮 abhi1625.github.io| 🏶 8402 49th Avenue, College Park, MD

EDUCATION

University of Maryland(UMD), College Park

Masters of Engineering in Robotics

Birla Institute of Technology and Science(BITS), Pilani, India Bachelors of Engineering(Hons.) in Mechanical Engineering

Relevant Coursework: Perception for Autonomous Robots, Decision making for Robotics, Software Development for Robotics, Computer Processing of Pictorial Information, Robot Learning

TECHNICAL SKILLS

Areas of Interest	Object tracking, Multi-view geometry, Localization, SLAM,
	Deep Reinforcement Learning, Decision Making for Autonomous Systems
Modeling and Analysis	Solidworks, MSc ADAMS, Simulink, MATLAB, V-REP, Gazebo
Software development	Agile development, Automated/Manual Unit testing, Google Mock/Test framework
Softwares & Tools	C++, ROS, Python, Linux, Tensorflow, TFLite, PyTorch, OpenCV, Git, Numpy, LaTex

RESEARCH EXPERIENCE

Geometric Algorithms for Motion, Modeling and Animation(GAMMA) Labs, UMD Research Assistant under Prof. Dinesh Manocha

- Used PyGame to develop a heterogeneous traffic environment to simulate aggressive driving behaviours like overspeeding, weaving and erratic lane changes.
- Analysed two approaches based on spectral graph theory and vertex centrality to classify driver behaviors based on vehicle trajectories.

Autonomous Micro Aerial Vehicle(AMAV) Team, UMD

Research Assistant under Prof. Derek Paley

- Working with Intel's depth and stereo modules to develop vision algorithms for path planning and obstacle avoidance on micro UAVs.
- Won the 7th edition of the VFS MAV Student Challenge, at the University of Pennsylvania, PA in May 2019.

Perception and Robotics Group, UMD

Research Assistant under Prof. Yiannis Aloimonos

- Performed neural network compression for a pipeline which predicts dense depth, optical flow and camera pose. Implemented network distillation and model quantization across different network architectures for comparison.
- Successfully reduced the memory footprint of the model by 94% and the inference time by 90% using Tensorflow and TFLite frameworks in python.

PROJECTS

- Optical Flow based Obstacle Avoidance Compared traditional Gunnar Farnebäck method and deep learning based Spatial Pyramid Network for real time obstacle avoidance on micro UAVs using optical flow. (link)
- Flying through Gaps: Developed a Gaussian-Mixture-Model (GMM) based vision feedback system to autonomously fly a quadrotor through a window of known dimensions but unknown position and orientation. (link)
- Visual Odometry: Estimated 3D trajectory of a stereo camera(Duo3D) by computing sparse optical flow using Kanade-Lucas-Tomasi(KLT) tracker. (link)
- Attitude Estimation: Compared madgwick and unscented kalman filters(UKF) to estimate orientation of a 6-DoF IMU against grouund-truth vicon data.(link)
- Kids Next Door: Developed a software package using ROS and C++ to simulate a mobile manipulator robot Tiago++ for pick and place operations. .(link)
- Human Obstacle Detection: Designed a software module to utilize a pretrained YOLOv3 network to detect and localize humans in a robot's reference frame.(link)

LEADERSHIP EXPERIENCE

Graduate Teaching Assistant

Perception for Autonomous Robotics - ENPM673, University of Maryland

- Jan. 2020 Present
- Helping students to learn various software packages to implement projects related to multi-view geometry, image segmentation, motion processing and object recognition.
- Assisting Dr Mohammed Charifa(course instructor) in developing course material and grading student submissions.

GPA: 3.86/4.0

GPA: 7.53/10(3.18/4) Aug. 2014 - May 2018

Jan. 2020 - Present

Dec. 2018 - Feb. 2020

Aug. 2018 - Dec. 2019

Aug. 2018 - May 2020